Extension of Planar Graph Drawings : Maximum Fan-crossing Free Graphs

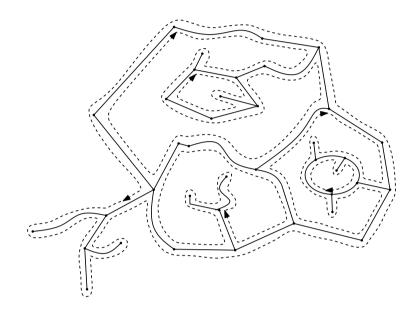
Otfried Cheong¹, Sariel Har-Peled², Hyosil Kim³, Hyuna Kim¹ ¹KAIST, Daejeon, Korea ²UIUC, Urbana, IL, USA ³POSTECH, Pohang, Korea

Korea Advanced Institute of Science and Technology

Background :

The Maximum Number of Edges in a Planar Graph is 3v - 6

- for a planar graph G = (V, E) with |V| = v.
- Triangulation. \equiv # edges reaches the maximum
 - $3f \leq \sum_{F:faces} (\# edges incident to F) \leq 2e$



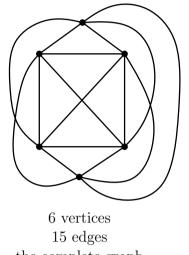
- Euler's Fomula (v e + f = 2).
- where v, e, f: # vertices, edges, and faces.
- ▶ $v e + f = 2 \le v e + \frac{2}{3}e = v \frac{1}{3}e$.

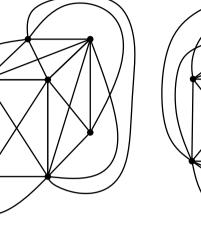
Definitions: **Fan-crossing Free Graphs**

We assume that drawings do not allow

Proofs - A Lower Bound (Work in Progress) : Maximum Fan-crossing Free Graphs

Non-straight drawings



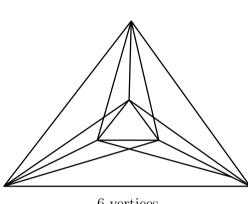


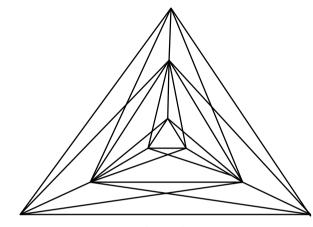
the complete graph

7 vertices 20 edges

8 vertices 24 edges

Straight drawings

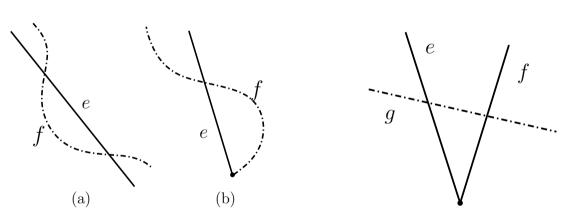




6 vertices 15 edges

9 vertices 27 edges

Proofs - An Upper Bound (Work in Progress) :

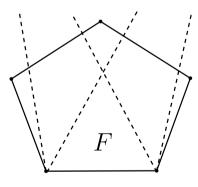


Fan-crossing

- ► A Maximal Fan-crossing Free Graph G
 - ► *G* is simple. (No parallel edges or loops.)
 - ▶ No more edge can be added to *G* for a given drawing.
- ► A Maximum Fan-crossing Free Graph G
 - ► *G* is simple.
- ► G achieves the maximum number of edges for a given number of vertices.

Maximum Fan-crossing Free Graphs

- ► If a face is bounded by some cycle, fan-crossing graphs
 - can be obtained by adding a restricted #edges to each face.
 - proved by induction.



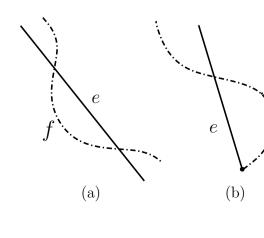
- If a face is not bounded by a cycle,
 - take a closed walk along the boundary of a faces.
 - handle holes (if there is no closed walk).

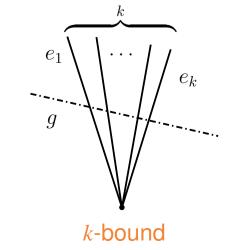
Conjectures : Maximum Fan-crossing Free Graphs

- e = 4v 8 for non-straight line drawings
- e = 4v 9 for straight line drawings
 - where e, v: # edges, vertices
- 2-connected
 - connected and a removal of a vertex does not affect to its connectivity.
- It can be constructed by tiling K_4 's.
 - It contains an underlying triangulation of vertices.
 - Edges can be added to every two adjacent triangles

Further Study (Work in Progress) : Maximum *k*-bound Free Graphs

We assume that drawings do not allow





Computer Science Department - KAIST - Daejeon, Korea

Mail: hyunak@kaist.ac.kr